Part Number Hot Search : 
122M31 NCMA40 MR140L IRFPF50 BD315 3843AM A6393 TC58V
Product Description
Full Text Search
 

To Download CPV362M4K Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD-5.045B
PRELIMINARY
CPV362M4K
Short Circuit Rated UltraFast IGBT
1
IGBT SIP MODULE
Features
* Short Circuit Rated UltraFast: Optimized for high operating frequencies >5.0 kHz , and Short Circuit Rated to 10s @ 125C, VGE = 15V * Fully isolated printed circuit board mount package * Switching-loss rating includes all "tail" losses TM * HEXFRED soft ultrafast diodes * Optimized for high operating frequency (over 5kHz) See Fig. 1 for Current vs. Frequency curve
3
Q1
D1 9 4
Q3
D3 15 10
Q5
D5 16
6
Q2
D2 12
Q4
D4 18
Q6
D6
7
13
19
Product Summary
Output Current in a Typical 20 kHz Motor Drive 4.3 ARMS per phase (1.27 kW total) with TC = 90C, TJ = 125C, Supply Voltage 360Vdc, Power Factor 0.8, Modulation Depth 115% (See Figure 1)
Description
The IGBT technology is the key to International Rectifier's advanced line of IMS (Insulated Metal Substrate) Power Modules. These modules are more efficient than comparable bipolar transistor modules, while at the same time having the simpler gate-drive requirements of the familiar power MOSFET. This superior technology has now been coupled to a state of the art materials system that maximizes power throughput with low thermal resistance. This package is highly suited to motor drive applications and where space is at a premium.
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25C IC @ TC = 100C ICM ILM IF @ TC = 100C IFM tsc VGE VISOL PD @ TC = 25C PD @ TC = 100C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current, each IGBT Continuous Collector Current, each IGBT Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Maximum Forward Current Short Circuit Withstand Time Gate-to-Emitter Voltage Isolation Voltage, any terminal to case, 1 minute Maximum Power Dissipation, each IGBT Maximum Power Dissipation, each IGBT Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting torque, 6-32 or M3 screw
IMS-2 Max. Units
V
600 5.7 3.0 11 11 3.4 11 10 20 2500 23 9.1 -40 to +150 300 (0.063 in. (1.6mm) from case) 5-7 lbf*in (0.55 - 0.8 N*m)
A
s V VRMS W
C
Thermal Resistance
Parameter
RJC (IGBT) RJC (DIODE) RCS (MODULE) Wt Junction-to-Case, each IGBT, one IGBT in conduction Junction-to-Case, each diode, one diode in conduction Case-to-Sink, flat, greased surface Weight of module
Typ.
--- --- 0.1 20 (0.7)
Max.
5.5 9.0 --- ---
Units
C/W g (oz)
2/24/98
CPV362M4K
Electrical Characteristics @ TJ = 25C (unless otherwise specified)
Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 600 --- V(BR)CES/TJ Temp. Coeff. of Breakdown Voltage --- 0.49 VCE(on) Collector-to-Emitter Saturation Voltage --- 1.70 --- 1.98 --- 1.65 VGE(th) Gate Threshold Voltage 3.0 --- VGE(th)/TJ Temp. Coeff. of Threshold Voltage --- -13 gfe Forward Transconductance 2.0 3.0 ICES Zero Gate Voltage Collector Current --- --- --- --- Diode Forward Voltage Drop --- 1.4 V FM --- 1.3 IGES Gate-to-Emitter Leakage Current --- --- V(BR)CES Max. Units Conditions --- V VGE = 0V, IC = 250A --- V/C VGE = 0V, IC = 1.0mA 1.93 IC = 3.0A VGE = 15V --- V IC = 5.7A See Fig. 2, 5 --- IC = 3.0A, TJ = 150C 6.0 VCE = VGE, IC = 250A --- mV/C VCE = VGE, IC = 250A --- S VCE = 100V, IC = 12A 250 A VGE = 0V, VCE = 600V 1700 VGE = 0V, VCE = 600V, TJ = 150C 1.7 V IC = 8A See Fig. 13 1.6 IC = 8A, TJ = 150C 100 nA VGE = 20V
Switching Characteristics @ TJ = 25C (unless otherwise specified)
Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets tsc td(on) tr td(off) tf Ets Cies Coes Cres t rr Irr Qrr di(rec)M/dt Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Short Circuit Withstand Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Diode Peak Reverse Recovery Current Diode Reverse Recovery Charge Diode Peak Rate of Fall of Recovery During tb Min. --- --- --- --- --- --- --- --- --- --- 10 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- Typ. 38 5.2 18 23 54 125 120 0.14 0.07 0.21 --- 25 51 308 166 0.33 450 61 14 37 55 3.5 4.5 65 124 240 210 Max. Units Conditions 57 IC = 3.0A 8 nC VCC = 400V 27 See Fig. 8 --- TJ = 25C --- ns IC = 3.0A, VCC = 480V 188 VGE = 15V, RG = 51 180 Energy losses include "tail" and --- diode reverse recovery. --- mJ See Fig. 9, 10, 18 0.26 --- s VCC = 360V, TJ = 125C VGE = 15V, RG = 51, VCPK < 500V --- TJ = 150C, See Fig. 10, 11, 18 --- ns IC =3.0A, VCC = 480V --- VGE = 15V, RG = 51 --- Energy losses include "tail" and --- mJ diode reverse recovery. --- VGE = 0V --- pF VCC = 30V See Fig. 7 --- = 1.0MHz 55 ns TJ = 25C See Fig. 90 TJ = 125C 14 IF = 8A 5.0 A TJ = 25C See Fig. 8.0 TJ = 125C 15 VR = 200V 138 nC TJ = 25C See Fig. 360 TJ = 125C 16 di/dt=200A/s --- A/s TJ = 25C See Fig. --- TJ = 125C 17
CPV362M4K
7.0
2.05
6.0
5.0
1.46
4.0
1.17
3.0
0.88
2.0
0.59
1.0
0.29
0.0 0.1 1 10
0.00 100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
100
I C , Collector-to-Emitter Current (A)
TJ = 25 o C TJ = 150 o C
10
I C , Collector-to-Emitter Current (A)
10
TJ = 150 o C
TJ = 25 o C V CC = 50V 5s PULSE WIDTH
5 10 15 20
1 1
V GE = 15V 20s PULSE WIDTH
10
1
VCE , Collector-to-Emitter Voltage (V)
VGE , Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
Total Output Power (kW)
LOAD CURRENT (A)
T c = 9 0C T j = 1 25 C P ow er F ac tor = 0 .8 M od ulatio n D ep th = 1 .15 V c c = 50 % of R ated V oltag e
1.76
CPV362M4K
6
VCE , Collector-to-Emitter Voltage(V)
M a xim um D C C o lle ctor C u rre n t (A )
VGE = 1 5V
2.5
VGE = 15V 80 us PULSE WIDTH
IC =
6A
4
2.0
IC =
3A
IC = 1.5 A
1.5
2
0 25 50 75 100 125
A
150
1.0 -60 -40 -20
0
20
40
60
80 100 120 140 160
TC , C a s e T e m p e ra tu re (C )
TJ , Junction Temperature ( C)
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature
10
T h e rm a l R e sp o n s e (Z thJC )
D = 0 .5 0
1
0 .20 0 .10 0 .0 5 0 .0 2 0 .0 1
PD M
0.1
S IN G L E P U L S E (T H E R M A L R E S P O N S E )
N o te s : 1 . D u ty fac tor D = t
t
1 t 2
1
/t
2
0.01 0.000 01
2 . P e a k T J = P D M x Z th J C + T C
0.0001
0.001
0.01
0.1
1
10
t 1 , R e c ta n g u lar P u ls e D u ra tio n (s e c )
Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case
CPV362M4K
800
VGE , Gate-to-Emitter Voltage (V)
VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc
16
VCC = 400V I C = 3A
C, Capacitance (pF)
600
12
Cies
400
8
200
4
Coes Cres
0 1 10 100
0 0 10 20 30 40
VCE , Collector-to-Emitter Voltage (V)
QG , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
1.0
Total Switching Losses (mJ)
Total Switching Losses (mJ)
V CC = 480V V GE = 15V TJ = 25 C 0.8 I C = 6.0A
1
51 RG = 10 51Ohm VGE = 15V VCC = 480V
IC =
6A
IC =
3A
0.6
IC = 1.5 A
0.1
0.4
0.2
0.0 0 10 20 30 40 50
0.01 -60 -40 -20
0
20
40
60
80 100 120 140 160
RG ,, Gate Resistance( (Ohm) RG Gate Resistance )
TJ , Junction Temperature C ) (
Fig. 9 - Typical Switching Losses vs. Gate Resistance
Fig. 10 - Typical Switching Losses vs. Junction Temperature
CPV362M4K
0.8
0.6
I C , C o lle cto r-to -E m itte r C u rre n t (A )
Total Switching Losses (mJ)
RG TJ VCC VGE
= 51Ohm = 150 C = 480V = 15V
100
V G E = 20 V T J = 12 5 C
10
S A FE O PE R A TIN G A R E A
0.4
1
0.2
0.0 1 2 3 4 5 6 7
0.1 1 10 100
A
1000
I C , Collector-to-emitter Current (A)
VC E , C o lle cto r-to -E m itte r V o lta g e (V )
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
100
Fig. 12 - Turn-Off SOA
In sta n ta n e o u s F o rw a rd C u rre n t - I F (A )
10
TJ = 1 5 0 C TJ = 1 2 5 C TJ = 2 5 C
1
0.1 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2
F o rw a rd V o lta g e D ro p - V F M (V )
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
CPV362M4K
100 100
VR = 2 0 0 V T J = 1 2 5 C T J = 2 5 C
80
VR = 2 0 0 V T J = 1 2 5 C T J = 2 5 C
IF = 16A
t rr - (n s )
60
I F = 8.0A
I IR R M - (A )
I F = 16A
10
40
I F = 8.0 A I F = 4.0A
I F = 4.0A
20
0 100
d i f /d t - (A / s)
1000
1 100
1000
d i f /d t - (A / s )
Fig. 14 - Typical Reverse Recovery vs. dif/dt
500
Fig. 15 - Typical Recovery Current vs. dif/dt
10000
VR = 2 0 0 V T J = 1 2 5 C T J = 2 5 C
400
VR = 2 0 0 V T J = 1 2 5 C T J = 2 5 C
300
d i(re c )M /d t - (A / s)
Q R R - (n C )
I F = 16A
200
I F = 4.0A
1000
I F = 8.0 A I F = 16A
I F = 8.0A
100
IF = 4.0A
0 100 100 100
d i f /d t - (A / s )
1000
1000
Fig. 16 - Typical Stored Charge vs. dif/dt
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
d i f /d t - (A / s )
CPV362M4K
Same type device as D .U.T.
90% V ge +V ge
V ce
80% of Vce
430F D .U .T.
Ic 10% V ce Ic 5% Ic td (off) tf 90% Ic
Fig. 18a - Test Circuit for Measurement of
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
E off =
t1+5 S V ce Ic Vceic dtdt t1
t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
G A T E V O LT A G E D .U .T . 10% + V g +V g
trr Ic
Q rr =
trr id dt Ic dt tx
tx 10% V c c Vce 10% Ic 90% Ic D U T V O LT A G E AND CURRENT Ipk Ic
10% Irr Vcc
V pk Irr
Vcc
D IO D E R E C O V E R Y W AVEFORMS td(on) tr 5% V c e t2 E on = V c e ieIc dt Vce dt t1 t2 D IO D E R E V E R S E RECOVERY ENERG Y t3 t4
E rec =
t4 V d idIc dt Vd dt t3
t1
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
CPV362M4K
V g G A T E S IG N A L D E V IC E U N D E R T E S T C U R R E N T D .U .T .
V O LT A G E IN D .U .T .
C U R R E N T IN D 1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
L 1000V 50V 600 0 F 100 V Vc*
D.U.T.
R L= 0 - 480V
480V 4 X IC @25C
Figure 19. Clamped Inductive Load Test Circuit
Figure 20. Pulsed Collector Current Test Circuit
CPV362M4K
Notes:
Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) VCC=80%(VCES), VGE=20V, L=10H, RG = 23 (Figure 19) Pulse width 80s; duty factor 0.1%. Pulse width 5.0s, single shot.
Case Outline -- IMS-2
62.43 (2.458) 3.91 (.154) 2X 53.85 (2.120)
7.87 (.310) 5.46 (.215)
21.97 (.865)
1
2
34
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19
0.38 (.015)
N O TE S : 1. Tolerance unless otherw is e s pecified 0.254 (.010). 2. C ontrolling D im ension: Inch. 3. D im ens ions are s how n in M illim eter (Inches). 4. Term inal num bers are show n for referenc e only. 1.27 (.050)
3.94 (.155)
4.06 0.51 (.160 .020) 5.08 (.200) 6X
1.27 (.050) 13X 2.54 (.100) 6X
3.05 0.38 (.120 .015) 0.76 (.030) 13X 0.51 (.020) 6.10 (.240)
IMS-2 Package Outline (13 Pins)
D im ens ions in M illim eters and (Inc hes )
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371 http://www.irf.com/ Data and specifications subject to change without notice. 2/98


▲Up To Search▲   

 
Price & Availability of CPV362M4K

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X